If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=900
We move all terms to the left:
y^2-(900)=0
a = 1; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·1·(-900)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*1}=\frac{-60}{2} =-30 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*1}=\frac{60}{2} =30 $
| 228+.2x=x | | 5t+10−=4−2t | | 2(1-m)=8-4m | | 14y+15=-125 | | 3(x-1)+4=2x+11 | | 4/9m=-3/5 | | 43+x=76 | | -8=12e=-20 | | 6t+3=-7-3 | | 4(x-5)+3=4x-7 | | -23d+81=-98d+1 | | x2+6x+28=0 | | 9=-9m(-9) | | 24x^2-71x-30=0 | | 4g+2(-4+2g)=1+g | | 4x-8÷3=-8 | | 2/3z-7=-9 | | x–5=–6 | | 2g+4(-3+4g)=1+g | | 48y^2+90y-32=0 | | 6g+3(-6+3g)=1+g | | 6x2-5x+5=0 | | 4n+5=7n-4 | | 4x+2=5x+12 | | -.8x^2+20x+100=0 | | x*568=128 | | X(x+1)-3=5x-7 | | (11x-5)+(24x+10)=90 | | x/128=128 | | -6y-8(-8y-3)=7+1 | | x+1/2*3*x=5 | | -6.5-3z-7.6-z=-3z-0.1 |